RELAPS5-3D Improvements
2014

Dr. George Mesina

RELAPS International Users Seminar
Idaho Falls, ID
September 11-12, 2014

-
\.ﬂb INL/CON-14-32915

|daho National
Laboratory




9
% ldaho National Laboratory:

Outline

* Recent Issues and Solutions
* New Code Capability
« Announcements and Documents



—~e_
m ldaho National Laboratory:

Issues going from 4.1.3 to Version 4.2.1

* Verification issues and developments are covered in another
presentation
* Issues
— Order of evaluation in if-tests, Part 2
— Allocation/Deallocation Issues
* Memory Leaks
* Initialization and nullification



—e
\E..“_b Idaho National Laboratory

Order of Evaluation of IF-tests

The order of evaluation is left to right in the C language and numerous
other programming languages
ANSI FORTRAN does not enforce this in any standard
Historically, it has been left to right on most computer platforms
With multi-core processors, it is seldom the case anymore
This affects many kinds of statements. Examples (.OP. means logical
operator:
IF (G(i) expression) .OP. (F(i) expression)) THEN
IF ((protection clause) .AND. (protected clause) ) THEN
IF ((protection clause) .OR. (protected clause) ) GO TO LINE

Cases 1 and 2 covered on 2013 presentation



—e
\E..“_b Idaho National Laboratory

Order of Evaluation: OR-clause

In left-to-right evaluation, optimized evaluation stops whenever the first
clause (the protector) is true. The second is never evaluated

The impact of evaluating the right-hand (protected) clause before the
left-hand clause varies from negligible to core-dump

Examples
IF (jJ <= 0 .OR. a(j) == 1.0) go to 100
IF (value < 0.0 .OR. sgrt(value) > 1.0) GO TO 10

First example: array accessed out of bounds: negative
Assumes a prior statement tested out-of-bounds positive indices
When compiled with debug on, the code will stop executing
Possible stoppage by O/S

Second example: core dump



—e_
\E..“_b Idaho National Laboratory

Order of Evaluation: Resolution Method

43216 if-tests to examine. Manual checking risks missing some

Locator program was written to find statements that have:
IF or ELSEIF with an OR-operator
Variable in parenthesis that is isolated in a preceding clause

Reduced to 1505 if-tests to check
5 statements found and corrected manually

Resolution Method: break the if-test
IF ((protection clause) .OR. (protected clause) ) GO TO 10
Becomes
If (protection clause) GO TO 10
If (protected clause) GO TO 10



—e
\E..“_b Idaho National Laboratory

Allocating and Deallocating Memory

Errors addressed
Failure to initialize and nullify

E.G. UP 14023, Hydro Matrix destroyed when insulator
(material 9) table was extended on restart

Cause: Subroutine QFMOVE allocated numerous arrays
without initializing any of them

Memory leaks

E.G. UP 14001, RELAP5-3D/PHISICS coupled code lost
memory access when running on the INL cluster

Cause: Subroutine RRKINO allocation not properly protected
Hanging of the machine (in a non-parallel process!)
This has only occurred in restarts with multiple input cases



—e_
m Idaho National Laboratory

Allocating and Deallocating Memory

Failure to initialize arrays when allocated means that the array holds
whatever value was left in memory

Floating point calculations can change

Indexing arrays can cause out of bounds memory access that fetch
wrong values or destroy data

Such errors can occur randomly and can be difficult to track down

Failure to nullify (or point) pointers when created can cause code
failure



—e
\E..“_b Idaho National Laboratory

Initializing Allocated Memory

RELAP5-3D developer rules
Memory should be initialized whenever it is allocated
Pointers should be nullified or given a target upon creation

Can be done via a loop or allocate statement

New RELAP5-3D allocation module subprograms do this for basic data
type arrays

Uses Fortran 2003 “source” keyword on the allocate statement to
zero out the array

For derived types it requires a derived type scalar zero
A project is underway to create derived type zero “scalars”

Created under type declaration using “structure” of derived
type declaration (for ease of future development)



—e
\E..“_b Idaho National Laboratory

Initializing Allocated Memory

Module allocation subroutines use the zero scalar on the “source”
keyword of the allocate statement

E.G. module VOLMOD
VOLDATZERO has over 400 components (including if-defs)
In subrotuine vimAllo
ALLOCATE (vim(nvim), SOURCE=voldatzero, STAT=istat)

Similarly, pointers should be nullified or initialized upon creation
Scalar pointers should be immediately nullified

Many derived type arrays have array components declared as
pointers

These can be initialized when allocated as above



—e
\E..“_b Idaho National Laboratory

Deallocating Memory

Memory leaks occur when a computer program incorrectly manages
memory allocation

In RELAP5-3D, these occur when memory is repeatedly created and
destroyed incorrectly

The incorrectly handled memory cannot be used for future
allocation during the code run

The code may quit for lack of available memory

Some sources:
Allocate/deallocate in the transient
Should not be done except for reflood where it is required
Besides memory leaks, it slows the code down
Multiple-case input decks can build-up memory leaks
When attached to massively parallel program, such as RAVEN




—e
\E..“_b Idaho National Laboratory

Deallocating Memory

Some ways to create memory leaks
Eliminate a pointer without first deallocating it

Deallocate a derived type without first deallocating its pointer
components

Large amounts can be lost if pointer is itself a derived type
array

When run with PHISICS on the massively parallel INL cluster, many
memory leaks occur

Two that affected results traced to input programs RRKINO and
RADHT and fixed

Another leak affected general tables for a NuScale model
Traced to RGNTBL and fixed

Many more remain to be corrected




—e_
\E..“_b Idaho National Laboratory

Deallocating Memory

It is an error to allocate an array that is already allocated and to
deallocated one that is not allocated.
Always check the allocation status before allocating/deallocating
IF (NOT.ALLOCATED(a)) THEN
ALLOCATE(a(na), SOURCE=0.0, STAT=istat)
IF (istat == 0) then
ALLOCATE(a(1)%b(nb), SOURCE=0.0, STAT=istat)



—~e_
m ldaho National Laboratory:

New Code Capability

» Nodal Kinetics Upgrades (Barber)
» Coupling with RAVEN and PHISICS (Rabiti)
* Added verification capability (Mesina)

— Multi-case input decks

— PC verification
— Input modification

* Moving Systems



—e
\E..“_b Idaho National Laboratory

Announcements

2 Dedicated RELAP5-3D Journal Issue
31 Abstracts received
Targets are:
ANS Nuclear Technology (NT)
ANS Nuclear Science and Engineering (NSE)
There is also interest from ASME
Papers due October 15, 2014
Will be published in 2015

RELAP5-3D News
http://www.inl.gov/relap5/news
LinkedIn RELAP5-3D Group

https://www.linkedin.com/groups/RELAP5-3D-Users-Group-
4483821



—e
\E..“_b Idaho National Laboratory

Announcements

RELAP5-3D “official” compiler is Intel Fortran 13.1

INL IT supports Windows 7 and SUSE Linux platforms
Windows XP is no longer supported
Windows 8 is still not supported
No other Linux is supported (in particular: Cygwin and Redhat)

INL RELAP5-3D Team supports installation on
Windows 7 with Visual Studio 2012
Linux via Linux C-shell scripts and Makefiles

It is possible to install RELAP5-3D on Macintosh systems, but INL
department does not support this



—e
\E..“_b Idaho National Laboratory

New Documents for RELAP5-3D and Auxiliaries

PROGRAMMING

G. L. Mesina, “Guidelines for developing RELAP5-3D coding,
INL/EXT-13-29228, Rev 2, June 2014

INSTALLING

J. H. Forsmann, G. L. Mesina, “RELAP5-3D Windows 7 Build,”
INL/MIS-12-27541 Rev. 1, October 2012

J. H. Forsmann, “RGUI Configuration Guide ,” GDE 648, INL/MIS-
13-30082, July 2014

RUNNING

J. H. Forsmann, J. E. Fisher, G. L. Mesina, “PYGMALION User’s

Manual,” GDE-621, INL/MIS-13-28216, INL/MIS-13-30083, March
2013

J. H. Forsmann, “RGUI Help Manual: RELAP5-3D Graphical User
Interface,” GDE 649, INL/MIS-13-30083, July 2014



CE.N_!.) Idaho National Laboratory
SUMMARY

Recent code issues presented here with solutions
Order of operations, part 2
Allocation and deallocation

Progress has been made on initializing and nullifying

New capability has been added in the code

A journal issue dedicated to RELAP5-3D will be published next year
Updated information is available on RELAP5-3D usage

Keep in touch with RELAP5-3D on the web site and social media



